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Abstract

The researchers made significant progress in all of the proposed research areas. The
first major task in the proposal involved simulation-based and sampling methods for global
optimization. In support of this task, we have discovered two new innovative approaches
to simulation-based global optimization; the first involves connections between stochastic
approximation and our model reference approach to global optimization, while the second
connects particle filtering and simulation-based approaches to global optimization. We have
also made significant progress in population-based global optimal search methods, applica-
tions of these algorithms to problems in statistics and clinical trials, and efficient allocation
of simulations.

In support of the second task, we have made progress incorporating simulation-based
and sampling methods into Markov Decision Processes (MDPs). We have made signifi-
cant progress on new sampling methods for MDPs, simulation-based approaches to partially
observable Markov decision processes (POMDPs), and applications of these algorithms.
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1 Introduction
In this research project, we proposed to investigate basic questions aimed at challenges in
information superiority, logistics, and planning for the Air Force of the future. In particular,
we proposed to investigate simulation-based methodologies for global optimization and plan-
ning that can be effective tools in an integrated approach to Global Awareness (Intelligence,
Surveillance and Reconnaissance, or ISR), Command and Control, planning, and logistics.

Such systems are exceedingly complex, and we combined four approaches in the study of
such problems:

• Developing and studying efficient simulation-based and sampling methodologies for
global optimization problems;

• Studying the application of these global optimization methodologies to practical prob-
lems, such as those arising in planning for unmanned aerial vehicles and data mining;

• Developing and studying efficient simulation-based and sampling methodologies for
problems of dynamic decision making under uncertainty;

• Studying the application of these dynamic optimization methodologies to practical
problems, such as inventory control, preventive maintenance, and optimal stopping.

1.1 Simulation-Based and Sampling Methods for Global Opti-
mization

Simulation is used to model complex stochastic systems arising in applications from supply
chain management to financial engineering to telecommunications, among many others. In
addition to performance evaluation, optimization — or at least improvement — of the system
is clearly a desirable objective.

Following [53], we distinguish between instance-based and model-based global optimiza-
tion solution methods. In instance-based methods, the search for new candidate solutions
depends directly on previously generated solutions, e.g., simulated annealing [33], genetic
algorithms (GAs) [18], tabu search [17], and nested partitions [41]. On the other hand, in
model-based algorithms, new candidate solutions are generated via an intermediate prob-
ability model that is iteratively updated. Our research has focused on the model-based
optimization framework, which involves the following ingredients:

(0) specify probability distribution over solution space;

(I) generate candidate solutions by sampling from distribution;

(II) estimate performance of (and possibly improve) candidate solutions;

(III) update distribution based on selected (“elite”) set of candidate solutions.

This approach retains the primary strengths of population-based approaches such as ge-
netic algorithms — improving upon simulated annealing, which works with a single iterate
at a time, while at the same time providing more flexibility in exploring the entire solution
space, introducing more structure in the search procedure, and allowing theoretical prop-
erties to be studied regarding both finite-time performance and asymptotic convergence.
The theory behind the framework is rigorous, but based on an idealized version of the last
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three ingredients, specifically the distribution sequence, sampling from the distribution se-
quence (or from a surrogate or approximation), and estimation of the performance, since it
is observed through simulation. Schematically, we seek a sequence of distributions

g0, g1, g2, ... −→ g∞,

where g∞ concentrates its mass around the optimal solutions.
Examples for the sequence of distributions {gk} include the following:

(a) proportional selection scheme — introduced in estimation of distribution algorithms
(EDAs) [48], and the instantiation of our model reference adaptive search (MRAS)
method in [25];

(b) Boltzmann distribution with decreasing (nonincreasing) temperature schedule — used
in the annealing adaptive search (AAS) [45, 40];

(c) optimal importance sampling measure — used in the cross-entropy (CE) method [13].

Case (c) is easiest to implement, but may not converge to a global optimum. The other two
cases have nice theoretical properties: Case (a) guarantees improvement in expectation [25],
whereas case (b) guarantees improvement in stochastic order [45]. All three will be used in
the proposed research.

However, in all three cases, the sequence {gk} is unknown explicitly a priori, or else the
problem would essentially be solved. So at iteration k, sampling is done from a surrogate dis-
tribution(s) that approximates gk. There are two main approaches that have been adopted:

• Markov chain Monte Carlo approximation to the target distribution at each iteration
[45], which involves generating a sequence of sample points from a sequence of dis-
tributions {πki} following a Markov chain that asymptotically converge to the target
distribution (at that iteration), i.e.,

πk1, πk2, ... −→ gk;

e.g., a common implementation is the “hit-and-run” algorithm [42, 46, 47];

• projection onto distributions that are easy to work with, e.g., use a family of param-
eterized distributions {fθ}, and project gk onto the family to obtain a sequence that
converges to the (final) target distribution, i.e.,

fθ0 , fθ1 , fθ2 , ... −→ g∞;

a common implementation minimizes the Kullback-Leibler (KL) divergence between
fθk

and gk at each iteration, because it leads to analytically tractable solutions if the
parameterized distributions are from the exponential family.

The first approach is adopted by AAS, and generates a sequence of candidate solutions at
each iteration. Our MRAS method and the CE method follow the second approach, which
leads to a population of candidate solutions, from which an elite set is selected and used to
update the distribution.
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1.2 Simulation-Based and Sampling Methods for Markov Decision
Processes

Simulation optimization problems arising in supply chain management, path planning for
unmanned aerial vehicles, financial engineering, and telecommunications are characterized
by two critical aspects: changing dynamics and stochastic events. For example, effective
supply chain management requires optimal responsive actions in the face of both gradual
shifts in demand patterns – e.g., due to technology advances – and sudden unpredictable
disruptions in production capacity – e.g., due to an unanticipated manufacturing facility
shutdown. Such systems often require computationally expensive simulation models for per-
formance estimation, such as modeling the operations of an entire semiconductor fabrication
facility, where simulation runtime is typically on the order of hours. Markov decision pro-
cesses (MDPs) provide a powerful paradigm for modeling optimal decision making under
uncertainty in these settings, but MDPs suffer from the well-known curse of dimensionality,
which can include exponential growth in the size of state spaces and action spaces with the
problem size; thus, direct numerical solution of MDPs for large-scale real-world problems is
not currently feasible. In general, heuristics and approximations are employed to simplify the
MDP model. Perhaps the most successful examples of this approach has been approximate
dynamic programming using value function approximation (cf. [2, 12, 37, 39, 44]), but the
size of problems that can be solved remains relatively small compared to large-scale real-
world problems of interest. The approaches studied in this research are meant to complement
these highly successful techniques.

2 Research Results

2.1 Simulation-Based and Randomized Methods for Global Opti-
mization

Consider finding the optimal solution to the problem of the form:

x∗ ∈ arg min
x∈X

H(x), (1)

where X ⊆ <n is the solution space, which can be either continuous or discrete, and H(·) :
X → < is a bounded, deterministic function. We assume the existence of the optimal
solution x∗. However, the function H is not necessarily convex or even continuous, and
there could be multiple local minima. Note that in a more general stochastic setting, the
objective function H itself may take the form of an expected value of a sample performance
h, H(x) = E[h(x, ψ)], where ψ is a random variable (possibly depending on x) representing
the stochastic effects of the system, and only estimates of noisy function h are available.

The theoretical properties and practical efficiencies of model-based methods are primarily
determined by the two key questions of how to update the probability models and how to
efficiently generate candidate solutions from them. In [25], the PIs have introduced a general
model-based randomized search framework called model reference adaptive search (MRAS),
where these difficulties are circumvented by sampling candidate solutions from a family of
parameterized distributions {fθ(·), θ ∈ Θ} (henceforth referred to as sampling distributions)
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and using a sequence of intermediate reference distributions {gk} to facilitate and guide the
updating of the parameters associated with the parameterized family. The idea of projecting
to the exponential family of distributions was first introduced by the CE method; see [25]
for the differences between MRAS and the CE method. The idea is that the parameterized
family is specified with some structure so that once the parameter is determined, sampling
from each of these distributions should be a relatively easy task. An additional advantage of
using the parameterized family is that the task of updating the entire distribution simplifies
to the task of updating its associated parameters. In MRAS, the parameter updating is
carried out by minimizing the Kullback-Leibler (KL) divergence between the parameterized
family and the reference distributions {gk}.

The sequence {gk} is primarily used to express the desired properties of the method.
Thus, these reference distributions are often selected so that they can be shown to converge
to a degenerate distribution with all probability mass concentrated on the set of optimal
solutions. Intuitively, the sampling distribution fθk

can be viewed as a compact approxima-
tion of the reference distribution gk (i.e., the projection of the reference distribution onto the
parameterized family). Thus, the hope is that the sequence of sampling distributions retain
the convergence properties of the sequence of reference distributions {gk}. The key steps in
each iteration (k) of MRAS are the following:

1. Given parameter θk, generate a set of N candidate solutions Λk = {X1
k , . . . , X

N
k } by

sampling from fθk
(·), and obtain their objective function values H(x) ∀x ∈ Λk.

2. Determine a set of “elite” candidate solutions Λelite ⊆ Λk (e.g., the set of solutions
with the best performance function values).

3. Update the parameter θk+1 based on Λelite by minimizing the KL divergence:

θk+1 = arg min
θ∈Θ

D(gk+1, fθ),

D(g, f) :=

∫
x∈X

ln
g(x)

f(x)
g(dx),

and set k ← k + 1.

Step 2 above is in the same spirit as the selection scheme used in many population-based
approaches such as genetic algorithms.

2.1.1 Model Reference Framework for Natural Exponential Families (NEFs)

For the exponential family of distributions, the minimization in step 3 of the basic algorithm
can be carried out in analytical form, which makes MRAS also easy to implement efficiently.

Definition: A parameterized family {fθ(·), θ ∈ Θ ⊆ <m} on X is called a natural exponential
family if there exist functions Γ : <d → <m and K : <m → < such that fθ(x) =
exp

(
θTΓ(x)−K(θ)

)
, where K(θ) = ln

∫
X exp(θTΓ(x))ν(dx), and ν is the Lebesgue/discrete

measure on X.

The function K(θ) plays an important role in the theory of natural exponential families. It
is strictly convex with ∇K(θ) = Eθ[Γ(X)] and Hessian matrix Covθ[Γ(X)]. Therefore, the
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Jacobian of the mean vector function m(θ) := Eθ[Γ(X)] is strictly positive definite and thus
invertible. From the inverse function theorem, it follows that m(θ) is also invertible.

When NEFs are used in the framework with the sample size N adaptively increasing with
rate γ > 1, the following result [25] establishes the convergence of the sequence of parameters
{θk} to the optimal parameter θ∗.

Theorem 1 Let β > 0 be a constant such that the set {x : S(H(x)) > 1
β} has a strictly

positive Lebesgue/counting measure. If γ > (βS(H(x∗)))2, then limk→∞ θk = m−1(Γ(x∗))
w.p.1.

This theorem, when restricted to many special cases, implies the convergence of the
sequence of sampling distributions {fθk

(·)} to a degenerate distribution on the set of optimal
solutions. For example, for continuous optimization problems, if the multivariate Gaussian
densities N (µk,Σk) with mean vector µk and covariance matrix Σk are used as parameterized
distributions, then a simple interpretation of the theorem gives

lim
k→∞

µk = x∗ and lim
k→∞

Σk = 0 w.p.1.

2.1.2 Extensions

The MRAS methodology is extended in [26, 24] to an algorithm called Stochastic Model
Reference Adaptive Search (SMRAS) for finding the global optimal solution to stochastic
optimization problems, for situations in which the objective function cannot be evaluated
exactly, but can be estimated with some noise (e.g., via simulation). We prove that SMRAS
converges asymptotically to a global optimal solution with probability one for both stochastic
continuous and discrete problems. Numerical studies have been carried out to validate the
method.

We have made the important discovery that there exists a close relationship between the
model-reference framework and the well-known stochastic approximation method [28]. This
relationship explains why these model-based algorithms work well for hard optimization
problems with little structure – by implicitly converting and transforming the underlying
problem into an equivalent problem on the parameter space with smooth differential struc-
tures – and any model-based algorithm that can be accommodated by the framework can
essentially be viewed as a gradient-based recursion on the parameter space for solving the
equivalent smoothed problem. This new discovery provides a unifying framework for analyz-
ing the convergence and convergence rate behavior of model-based algorithms, in the sense
that the available tools and results of stochastic approximation from over half a century
can be applied to study model-based algorithms for general non-differentiable optimization
problems. Moreover, this equivalence relationship will also help us to understand the ca-
pability and limitation of model-based algorithms, and provide insight into designing new
algorithm instantiations. Our empirical implementation of model-based algorithms based on
a pure gradient interpretation indicates significant performance improvement over their orig-
inal versions. We believe that this new direction will eventually lead to robust and efficient
new simulation and sampling-based techniques capable of handling complex optimization
problem involving hundreds of decision variables.
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Another important aspect we have worked on is the simulation/sampling efficiency issue
in model-based algorithms. This is motivated by the fact that many model-based algorithms
have a demanding computational requirement per iteration, since a sufficient number of can-
didate solutions need to be collected to update the probability models over the solution space.
Efficient simulation and sampling procedures in model-based algorithms will help to capture
reliable information in updating probability models with only a modest computational effort,
and thus further enhance the value of such algorithms. Our approach is based on model-
ing the simulation and sampling process in a typical model-based algorithm as a sequential
decision making problem, where the ultimate goal is to maximize algorithm performance
subject to a given computational budget constraint. Some theoretical and empirical findings
are contained in [22]. Our results show that for high-dimensional optimization problems,
the proposed computing budget allocation scheme could yield orders of magnitude savings
in computational effort.

In [52], [50] we have proposed an innovative new framework for optimization problems
based on particle filtering (also called Sequential Monte Carlo method). This framework
unifies and provides new insight into randomized optimization algorithms. The framework
also sheds light on developing new optimization algorithms through the freedom in the
framework and the various techniques for improving particle filtering.

The paper [23] considers a population-based Model-based Search (MBS), where a pop-
ulation of probabilistic models is maintained/updated and subsequently propagated from
generation to generation. Unlike traditional MBS, one of the key questions in the proposed
approach is how to efficiently distribute a given sample budget among different models in
a population to maximize the algorithm performance. We formulate this problem as a
MDP model and derive an optimal sampling scheme to adaptively allocate computational
resources. In particular, the proposed sampling scheme assigns to each model a performance
index to determine the quality of the model and samples the one that has the current best
index. These performance indices are then further used in conjunction with a variant of
the recently proposed cross-entropy (CE) method to update the current population to pro-
duce an improving population of models. We carry out numerical studies to illustrate the
algorithm and compare its performance with existing procedures.

2.1.3 Applications

We have studied an application in data mining, specifically model-based cluster analysis
involving maximum likelihood estimation. For large data sets with many clusters, the re-
sulting log-likelihood function has many local optima, so traditional statistical techniques
such as the popular Expectation-Maximization (EM) algorithm often fail to find the global
maximum. We have recently applied our MRAS method clustering problems [20] and com-
pared it with the EM method. Although the EM method is faster in converging to a local
optimum, for problems with many local optima, it often fails to find the global optimum
found by the other two methods, even with many restarts.

We have also made considerable advances in applying our sampling and model-based
framework and related techniques to solving statistical problems. For example, we have
proposed [29] two adaptive resampling algorithms for estimating bootstrap distributions.
One algorithm applies the CE method and does not require calculation of the resampling
probability weights via numerical optimization methods (e.g., Newton’s method), whereas
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the other algorithm can be viewed as a multi-stage extension of the classical two-step vari-
ance minimization approach. The two algorithms can be easily used as part of a general
algorithm for Monte Carlo calculation of bootstrap confidence intervals and tests, and is
especially useful in estimating rare event probabilities. We analyze theoretical properties of
both algorithms in an idealized setting and carry out simulation studies to demonstrate their
performance. In [30], we propose an adaptive importance resampling algorithm for estimat-
ing bootstrap quantiles of general statistics. The algorithm is especially useful in estimating
extreme quantiles and can be easily used to construct bootstrap confidence intervals. Em-
pirical results on real and simulated data sets show that the proposed algorithm is not only
superior to the uniform resampling approach, but may also provide more than an order of
magnitude of computational efficiency gains. We have introduced [43] a multi-step variance
minimization algorithm for numerical estimation of Type I and Type II error probabilities
in sequential tests. The algorithm can be applied to general test statistics and easily built
into general design algorithms for sequential tests. Our simulation results indicate that the
proposed algorithm is particularly useful for estimating tail probabilities, and may lead to
significant computational efficiency gains over the crude Monte Carlo method.

Many clinical trials involve a sequential stopping rule to specify the conditions under
which a study might be terminated earlier before its planned completion. The most impor-
tant issue in the design stage is to determine the common operating characteristics such as
Type I and Type II error rates, for which crude Monte Carlo simulation methods are widely
adopted. However, it is well known that crude Monte Carlo may lead to large variabilities in
resultant estimates and excessive waste of computational resources. In [31], we propose an
efficient importance sampling approach for determining type I and type II error rates in both
fully sequential and group sequential clinical trial designs with either immediate responses
or survival endpoints. The approach is insensitive to the underlying statistics of interest,
and can be easily built into a general algorithm to evaluate error rates, determine sample
sizes, test statistical hypotheses, and construct confidence intervals.

Dose-response studies are routinely conducted in clinical trials to determine viable dose
levels for newly developed therapeutic drugs. Due to safety, efficacy, and experimental design
considerations, practical constraints are often imposed on (1) dose range (e.g. restricted
dose range), (2) dose levels (e.g. the inclusion of placebo), (3) dose numbers (e.g. no more
than four dose groups), (4) dose proportions (e.g. at least 20 percent of the subjects will
be allocated to the placebo) and (5) potential missing trials. We propose [32] controlled
optimal designs, that is, Bayesian multiple-objective optimal designs satisfying one or more
of these practical constraints, for dose response studies. The resulting controlled optimal
designs satisfying these realistic constraints can be readily adopted by the pharmaceutical
researchers for optimal estimation of the parameters of interest such as the median effective
dose level or the threshold dose level. We demonstrate our results and methodology through
the logistic dose response model although our approach is viable for virtually any dose
response model.

We have contributed to important advances the efficient allocation of a simulation bud-
get. We have previously considered the problem of efficiently allocating simulation replica-
tions in order to maximize the probability of selecting the best design under the scenario
in which system performances are sampled in the presence of correlation. For a general
number of competing designs, an approximation for the asymptotically optimal allocation is
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obtained, which coincides with the independent case derived previously in the limit as the
correlation vanishes. An allocation algorithm based on the approximation is proposed and
tested on several numerical examples. We have proposed [19] an optimal computing bud-
get allocation (OCBA) method to improve the efficiency of simulation optimization using
the CE method. In the stochastic simulation setting where replications are expensive but
noise in the objective function estimate could mislead the search process, the allocation of
simulation replications can make a significant difference in the performance of such global
optimization search algorithms. The OCBA approach proposed here improves the updating
of the sampling distribution by carrying out this allocation in an efficient manner. Numerical
experiments indicate that the integration of OCBA with the CE method provides substantial
computational improvement.

In [6], [21] we have presented a new sampling-based algorithm for solving stochastic
discrete optimization problems. The algorithm solves the sample average approximation
(SAA) of the original problem by iteratively updating and sampling from a probability
distribution over the search space. We show that as the number of samples goes to infinity,
the value returned by the algorithm converges to the optimal objective-function value and the
probability distribution to a distribution that concentrates only on the set of best solutions
of the original problem. We then extend the algorithm to solving finite-horizon MDPs,
where the underlying MDP is approximated by a recursive SAA problem. We show that the
estimate of the recursive sample-average-maximum computed by the extended algorithm at
a given state approaches the optimal value of the state as the sample size per state per
stage goes to infinity. The recursive algorithm for MDPs is then further extended to finite-
horizon two-person zero-sum Markov games (MGs), providing a finite-iteration bound to
the equilibrium value of the induced SAA game problem and asymptotic convergence to the
equilibrium value of the original game. The time and space complexities of the extended
algorithms for MDPs and MGs are independent of their state spaces.

In another application of simulation optimization, we have studied [16] the problem of de-
termining the optimal control limits of control charts, which requires estimating the gradient
of the expected cost function. Simulation is a very general methodology for estimating the
expected costs, but for estimating the gradient, straightforward finite difference estimators
can be inefficient. We demonstrate an alternative approach based on smoothed perturbation
analysis (SPA), also known as conditional Monte Carlo. Numerical results and consequent
design insights are obtained in determining the optimal control limits for EWMA and Bayes
charts. The results indicate that the SPA gradient estimators can be significantly more effi-
cient than finite difference estimators, and that a simulation approach using these estimators
provides a viable alternative to other numerical solution techniques for the economic design
problem.

2.2 Simulation-Based and Sampling Methods for Markov Decision
Processes

We define an MDP {Xi, i = 0, 1, ..., T} on state space S and action space A (cf. e.g.,
[1, 5]). In period (stage) i, the MDP in state Xi ∈ S takes action ai ∈ A, incurs cost
Ci(Xi, ai, ωi), where ωi denotes the stochastic element (e.g., random number), and then
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transitions according to
Xi+1 = fi+1(Xi, ai, ωi),

where fi(x, a, ·) denotes the (stochastic) transition function in period i for action a taken
in state x. For notational simplicity, we have not made state and action spaces period
dependent.

The objective is to find a feedback control policy π ≡ {πi(x)}T−1
i=0 , which is a sequence of

decision rules specifying the action ai taken when in state x in period i, that minimizes an
expected cost function, usually either finite horizon total cost, finite horizon discounted total
cost, infinite horizon average cost, or infinite horizon discounted total cost. This proposal
focuses on the discounted total cost setting, both finite and infinite horizon, and we define
the value function associated with a policy and initial state:

V π(x) = E

[
T−1∑
i=0

αiCi(Xi, πi(Xi), ωi)

∣∣∣∣∣X0 = x

]
, (2)

where α is the (one-period) discount factor and T could be infinite, under the assumption
that the limit is then well defined. As stated earlier, the chief context is the setting in which
simulation is required to generate the system dynamics (state transitions) and/or period
costs.

We begin by defining some familiar quantities:

Qi(x, a) = (expected) cost-to-go (Q-function) in period i for action a taken in state x

and optimal actions taken henceforth;

Vi(x) = optimal value function in period i for state x.

Then we have the usual Bellman optimality equation [1, 38]:

Vi(x) = inf
a
{E [Ci(x, a, ωi) + αVi+1(fi+1(x, a, ωi))]} , (3)

written here in two-part form:

Qi(x, a) = E [Ci(s, a, ωi) + αVi+1(fi+1(x, a, ωi))] , (4)

Vi(x) = inf
a
Qi(x, a). (5)

An optimal policy in period i will be denoted by

π∗i (x) ∈ arg inf
a
Qi(x, a), i = 0, ..., T − 1, x ∈ S. (6)

When the policy is stationary, the subscript/argument i will be dropped. In the infinite
horizon stationary case, (3) takes the following form:

V (x) = inf
a
{E [C(x, a, ω) + αV (f(x, a, ω))]} , (7)

and we will assume there exists an optimal stationary policy such that

π∗(x) ∈ arg inf
a
Q(x, a), x ∈ S.
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Input: stage i < T , state x ∈ X, Ni > 0, other parameters. (For i = T , V̂ NT

T (x) =
V NT

T (x) = 0.)

Initialization: algorithm parameters; total number of simulations set to 0.

Loop until total number of simulations reaches Ni:

• Determine an action â to simulate next state via f(x, â, ω), ω ∼ U(0, 1).

• Update the following:
number of times action a has been sampled N i

â(x)← N i
â(x) + 1,

Q-function estimate Q̂Ni
i (x, â) based on C(x, â, ω) and V̂

Ni+1
i+1 (f(x, â, ω)),

the current optimal action estimate (for state x in stage i),
and other algorithm-specific parameters.

Output: V̂ Ni
i (x) based on Q-function estimates {Q̂Ni

i (x, a)}.

Figure 1: Adaptive multi-stage (AMS) sampling framework

Traditional methods of policy iteration, value iteration, and variants based on linear pro-
gramming all suffer from the curse of dimensionality. Furthermore, the transition function
fi is generally not known in closed form (note that in traditional MDP formulations, it is
expressed in terms of explicit transition probabilities assumed given), but may be generated
by a complicated stochastic simulation model, so in such a setting, the traditional methods
are not directly applicable.

2.2.1 Adaptive Multi-stage Sampling

Adaptive multi-stage (AMS) sampling algorithms [3, 4] provide procedures for accurately and
efficiently estimating the optimal value function under the constraint that there is a finite
number of simulation replications to be allocated per state per period. These algorithms
adaptively choose which action to sample as the sampling process proceeds, based on the
estimates obtained up to that point, providing value function estimators that converge to
the true value asymptotically in the number of simulation replications allocated per state.
These algorithms are targeted at finite-horizon MDPs with large, possibly uncountable, state
spaces but smaller finite action spaces.

Letting V̂ Ni
i (x) denote the estimate of the optimal value function Vi(x) based on Ni

simulations in period (stage) i, the objective is to estimate the optimal value V0(x0) for
a given starting state x0. The approach will be to optimize over actions, based on the
recursive optimality equations given by (4) and (5). The latter involves an optimization over
the action space, so the main objective of the approaches is to adaptively determine which
action to sample next. The chosen action will then be used to simulate the one-period costs
Ci(x, a, ω

a
i,j) and next state fi+1(x, a, ωai,j), which are used to update the estimate of Qi(x, a)

denoted by Q̂Ni
i (x, a), which in turn determines the estimate V̂ Ni

i (x). Figure 1 provides a
generic algorithm outline for the adaptive multi-stage sampling framework.

Specifically, Qi(x, a) is estimated for each state x and action a ∈ A(x), where A(x) is the
set of admissible actions in state x, by a sample mean based on simulated next states and
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rewards:

Q̂Ni
i (x, a) =

1

N i
a(x)

N i
a(x)∑
j=1

[
Ci(x, a, ω

a
i,j) + αV̂

Ni+1

i+1 (fi+1(x, a, ωai,j))
]
, (8)

where N i
a(x) is the number of times action a has been sampled from state x in period (stage)

i (Ni =
∑

a∈A(x) N
i
a(x)), and the sequence {ωai,j, j = 1, ..., N i

a(x)} contains the correspond-

ing random numbers used to simulate the one-period costs Ci(x, a, ω
a
i,j) and next states

fi+1(x, a, ωai,j). Note that the number of next-state samples depends on the state x, action
a, and stage i.

In the general framework that estimates the Q-function via (8), the total number of
sampled (next) states is O(NT ) with N = maxi=0,...,T−1 Ni, which is independent of the
state space size. One approach is to select “optimal” values of N i

a(x) for i = 0, ..., T − 1,
a ∈ A(x), and x ∈ X, such that the expected error between the values of V̂ N0

0 (x) and
V0(x) is minimized, but this problem would be difficult to solve. We have developed two
algorithms. Both construct a sampled tree in a recursive manner to estimate the optimal
value at an initial state and incorporate an adaptive sampling mechanism for selecting which
action to sample at each branch in the tree. The upper confidence bound (UCB) sampling
algorithm chooses the next action based on the exploration-exploitation tradeoff captured
by a multi-armed bandit model, whereas in the pursuit learning automata (PLA) sampling
algorithm, the action is sampled from a probability distribution over the action space, where
the distribution tries to concentrate mass on (“pursue”) the estimate of the optimal action.
The analysis of the UCB sampling algorithm is given in terms of the expected bias [3],
whereas for the PLA sampling algorithm we provide a probability bound [4].

2.2.2 Population-Based Randomized Methods for MDPs

Population-based randomized algorithms for MDPs directly search the policy space to avoid
carrying out an optimization over the entire action space at each policy iteration step, and
update a population of policies as in genetic algorithms (GAs), using appropriate analogous
operations for the MDP setting. The hope is that a population-based approach provides
robustness, similar to GAs and scatter search in deterministic combinatorial optimization.
The literature applying evolutionary algorithms such as GAs for solving MDPs is relatively
sparse (e.g., [11, 34]). We have developed new population-based algorithms in [8, 27].

The first key feature of the algorithms in [8, 27] needed to ensure convergence to an
optimal policy is an elitist policy that has a value function at least as good as the best value
function in the previous population, i.e., π̂ ∈ Πs is an elitist policy for Λ ⊂ Πs if ∀π ∈ Λ,

V π̂(x) ≤ V π(x) ∀x ∈ S.

If π̂k denotes an elitist policy for generation k, then it has the following monotonicity prop-
erty:

V π̂k+1

(x) ≤ V π̂k

(x) ∀x ∈ S.

We use the term “elitist” (single policy) to distinguish it from “elite” (set of candidate
solutions) in traditional GAs. The other key feature is an action selection distribution that
generates mutations of policies to explore the policy space. An action selection distribution
Px for state x ∈ S is a probability distribution over the action space A. The monotonicity
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Input: population size n > 1, initial population Λ0, action selection distribution Px ∀x ∈ S,
other policy mutation parameters.

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:

• Generate an Elitist Policy π̂k based on Λk.

• Exploration: Generate (n− 1) policies {π̃1, . . . , π̃n−1}
via mutation operators and sampling from action selection distribution Px.

• Next Population Generation: Λk+1={π̂k, π̃1, . . . , π̃n−1}, i=1, ..., n− 1.

• k ← k + 1.

Output: π̂k an estimated optimal policy.

Figure 2: Population-based evolutionary framework for MDPs.

property of the elitist policy and the exploration property of the action selection distribution
ensure that the algorithms converge to a population in which the elitist policy is an optimal
policy. A description of a general framework for the population-based evolutionary approach
is provided in Fig. 2, where Λk ⊂ Πs denotes the kth generation population of policies and
n = |Λk| > 1 is the constant population size.

We have developed two algorithms: evolutionary policy iteration (EPI) and evolutionary
random policy search (ERPS). These algorithms are especially targeted to problems where
the state space is relatively small but the action space is extremely large, so that the policy
improvement step in policy iteration (PI) becomes computationally impractical. They elim-
inate the operation of maximization over the entire action space in the policy improvement
step by directly manipulating policies to generate an elitist policy. In earlier work under
AFOSR support, we developed EPI [8], which uses a technique called policy switching [7] to
generate an elitist policy from a set of given policies, with a computation time on the order
of the size of the state space.

Evolutionary Random Policy Search

Evolutionary Random Policy Search (ERPS) is an enhancement of EPI that improves upon
both the elitist policy determination and the mutation step by solving a sequence of sub-
MDP problems defined on smaller policy spaces. As in EPI, each iteration of ERPS has two
main steps: (i) generating an elitist policy, but using policy improvement with cost swapping
(PICS) instead of policy switching, and (ii) exploring the policy using a “nearest neighbor”
heuristic along with sampling of the entire action space.

Policy Improvement with Cost Swapping

ERPS splits a potentially large MDP problem into a sequence of smaller MDPs, to extract
a convergent sequence of policies via solving these smaller problems. For a given policy
population Λ, if we restrict the original MDP (e.g., costs, transition probabilities) to the
subsets of actions Γ(x) := {π(x) : π ∈ Λ} ∀ x ∈ S, then a sub-MDP problem is induced from
Λ as GΛ := (S,Γ, f, c), where Γ :=

⋃
x Γ(x) ⊂ A. Note that in general Γ(x) is a multi-set,

which means that the set may contain repeated elements; however, we can always discard
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the redundant members and view Γ(x) as the set of admissible actions at state x.
Given a nonempty finite subset Λ ⊂ Πs, a policy πpics generated by policy improvement

with cost swapping (PICS) with respect to the sub-MDP GΛ is given by

πpics(x) ∈ arg min
a∈Γ(x)

{
E
[
C(x, a, ω)

]
+ αE

[
V̄ Λ(f(x, a, ω))

] }
, (9)

where V̄ Λ(x) = minπ∈Λ V
π(x) ∀x ∈ S. PICS is a variation of the policy improvement step in

policy iteration performed on the “swapped cost” V̄ Λ(x) = minπ∈Λ V
π(x), hence the name

“policy improvement with cost swapping”. Note that the “swapped cost” V̄ Λ(x) may not
be the value function corresponding to any single policy in Λ. However, the following result
shows that the elitist policy generated by PICS improves any policy in Λ.

Theorem 2 Consider a nonempty finite subset Λ ⊂ Πs and the policy πpics generated by
PICS with respect to GΛ given by (9). Then, for all x ∈ S, V πpics(x) ≤ V̄ Λ(x). Furthermore,
if πpics is not optimal for the sub-MDP GΛ, then V πpics(x) < V̄ Λ(x) for at least one x ∈ S.

According to this theorem, in each step of ERPS, the elitist policy π̂k generated by
PICS with respect to the current sub-MDP GΛk

, as given by (9), improves any policy in
Λk. Thus, the new population Λk+1 contains a policy that is superior to any policy in the
previous population. Since π̂k is directly used to generate the (k + 1)st sub-MDP , the
desired monotonicity property follows by induction.

Corollary 1 Under ERPS, for all k ≥ 0, V π̂k+1
(x) ≤ V π̂k

(x) ∀x ∈ S.

The computational complexity of each iteration of PICS is approximately the same as
that of policy switching, because the policy evaluation step of PICS, which is also used
by policy switching, requires solution of n systems of linear equations, and the number of
operations required by using a direct method (e.g., Gaussian Elimination) is O(n|S|3), and
this dominates the computational complexity of the policy improvement step, which is at
most O(n|S|2).

Exploration via policy mutation and local nearest neighbor search

After PICS is used to generate an elitist policy, n− 1 other policies π̃i, i = 1, ..., n− 1, are
generated by the following procedure:

With probability q0 (exploitation)
choose action π̃i(x) in neighborhood of π̂k(x), x ∈ S, using “nearest neighbor”

heuristic.
else (with probability 1− q0) (exploration)

choose action π̃i(x) ∈ A according to Px, x ∈ S.

These policies are then combined with the elitist policy to form the next generation.
For a metric space A with metric d(·, ·), we have the following convergence result.

Theorem 3 Let π∗ be an optimal policy with corresponding value function V π∗, and let the
sequence of elitist policies generated by ERPS together with their corresponding value func-
tions be denoted by {π̂k, k = 1, 2, . . .} and {V π̂k

, k = 1, 2, . . .}, respectively. If (i) q0 < 1, (ii)
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the action selection distribution satisfies for any ` > 0, Px({a| d(a, π∗(x)) ≤ `, a ∈ A}) >
0, ∀x ∈ S, and (iii) the transition matrix/function and one-stage cost function satisfy
Lipschitz-type conditions, then

V π̂k

(x) −→ V π∗(x) ∀x ∈ S w.p.1.

2.2.3 Simulation-Based Approach to POMDPs

In a simulation-based approach to POMDPs, we have developed in [49, 51] a computationally
viable and theoretically sound method for solving continuous-state POMDPs by effectively
reducing the dimensionality of the belief space via density projections. The density projection
technique is also incorporated into particle filtering (state estimation using simulations)
to provide a filtering scheme for online decision-making. We have proved an error bound
between the value function induced by the policy obtained by our method and the true value
function of the POMDP, and also an error bound between the projection particle filter and
the optimal filter. Finally, we have illustrated the effectiveness of our method through an
inventory control problem.

3 Additional Research Progress

We have also made significant progress in the following areas:

• Perturbation analysis of a dynamic priority call center ([10]);

• Conditional Monte Carlo estimation of quantile sensitivites ([36]);

• Invited papers on simulation optimization and its applications [15], [35], [14], [9]..

4 Research Output

4.1 Journal Publications

• H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus. A Survey of Some Simulation-based
Methods in Markov Decision Processes, Communications in Information and Systems,
7, 59-92, 2007.

• H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus. Recursive Learning Automata Approach
to Markov Decision Processes, IEEE Transactions on Automatic Control, 52, 1349-
1355, 2007.

• H.S. Chang, J. Hu, M.C. Fu, and S.I. Marcus, Adaptive Adversarial Multi-Armed
Bandit Approach to Two-Person Zero-Sum Markov Games, IEEE Transactions on
Automatic Control, forthcoming, 2010.

• M. Chen, J.Q. Hu, and M.C. Fu. Perturbation Analysis of a Dynamic Priority Call
Center, IEEE Transactions on Automatic Control, forthcoming, 2010.
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• C.H. Chen, D. He, M.C. Fu, and L.H. Lee. Efficient Simulation Budget Allocation for
Selecting an Optimal Subset, INFORMS Journal on Computing, Vol.20, No.4, 579-595,
2008.

• M.C. Fu. What You Should Know About Simulation and Derivatives (Cover Story),
Naval Research Logistics, Vol.55, No.8, 723-736, 2008.

• M.C. Fu, L.J. Hong and J.Q. Hu. Conditional Monte Carlo Estimation of Quantile
Sensitivities, Management Science, Vol.55, No.12, 2019-2027, 2009.

• M.C. Fu, S. Lele, and T. Vossen. Conditional Monte Carlo Gradient Estimation in
Economic Design of Control Limits, Production & Operations Management, Vol. 18,
No. 1, 60-77, 2009.

• D. He, L.H. Lee, C.H. Chen, M.C. Fu, and S. Wasserkrug. Simulation Optimization
Using the Cross-Entropy Method with Optimal Computing Budget Allocation, ACM
Transactions on Modeling and Computer Simulation, in press.

• J.W. Heath, M.C. Fu, and W. Jank. New Global Optimization Algorithms for Model-
Based Clustering, Computational Statistics and Data Analysis, in press.

• J. Hu, M.C. Fu, V. Ramezani, and S.I. Marcus. An Evolutionary Random Policy Search
Algorithm for Solving Markov Decision Processes, INFORMS Journal on Computing,
19, 161-174, 2007.

• J. Hu, M.C. Fu, and S.I. Marcus. A Model Reference Adaptive Search Algorithm for
Global Optimization, Operations Research, 55, 549-568, 2007.

• J. Hu and Z. Su. Efficient Error Determination in Sequential Clinical Trial Design,
Journal of Computational and Graphical Statistics, 17, 925-948, 2008.

• J. Hu and Z. Su. Adaptive Resampling Algorithms for Estimating Bootstrap Distri-
butions, Journal of Statistical Planning and Inference, 138, 1763-1777, 2008.

• J. Hu and Z. Su. Bootstrap Quantile Estimation via Importance Resampling, Compu-
tational Statistics and Data Analysis, 52, 5136-5142, 2008.

• J. Hu, M.C. Fu, and S. I. Marcus. A Model Reference Adaptive Search Method for
Stochastic Global Optimization, Communications in Information and Systems, 8, 245-
276, 2009.

• J. Hu, H.S. Chang, M.C. Fu, and S.I. Marcus. Dynamic Sample Budget Allocation in
Model-Based Optimization, Journal of Global Optimization, forthcoming, 2010.

• J. Hu, W. Zhu, Y. Su, and W. K. Wong. Controlled Optimal Design Program for the
Logit Dose Response Model, Journal of Statistical Software, forthcoming, 2010.

• H.G. Lee, A. Arapostathis, and S.I. Marcus, Necessary and Sufficient Conditions
for State Equivalence to a Nonlinear Discrete-Time Observer Canonical Form, IEEE
Transactions on Automatic Control, 53, 2701-2707, 2008.
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• Z. Su, J. Hu, and W. Zhu. “Multi-Step Variance Minimization in Sequential Tests,”
Statistics and Computing, 18, 101-108, 2008.

• E. Zhou, M.C. Fu, and S.I. Marcus. Projection Particle Filtering for Dimension Re-
duction in Continuous-time POMDPs, IEEE Transaction on Automatic Control, forth-
coming, 2010.

4.2 Refereed Proceedings or Book Chapters

• H. S. Chang, M. C. Fu, and S. I. Marcus. Adversarial Multi-Armed Bandit Approach
to Two-Person Zero-Sum Markov Games, Proceedings of the 46th IEEE Conference on
Decision and Control, December 2007.

• C.H. Chen, M.C. Fu, and L. Shi. Simulation and Optimization, Tutorials in Operations
Research, Z.L. Chen and S. Raghavan, editors, INFORMS, 247–260, 2008.

• M.C. Fu. Variance-Gamma and Monte Carlo, Advances in Mathematical Finance,
M.C. Fu, R.A. Jarrow, J.-Y. Yen, and R.J. Elliott, editors, Birkhauser, 21-35, 2007.

• M.C. Fu, C.H. Chen, and L. Shi. Some Topics in Simulation Optimization, Proceedings
of the 2008 Winter Simulation Conference, Miami, FL, Dec. 7-10, 2008.

• J. Hu, M. C. Fu, and S. I. Marcus. A Model Reference Adaptive Search Method for
Stochastic Optimization with Applications to Markov Decision Processes, Proceedings
of the 46th IEEE Conference on Decision and Control, December 2007.

• J. Hu and H. S. Chang. A Population-Based Cross-Entropy Method with Dynamic
Sample Allocation, Proceedings of 47th IEEE Conference on Decision and Control,
2426-2431, 2008.

• J. Hu and P. Hu. On the Performance of the Cross-Entropy Method, Proceedings of
the 2009 Winter Simulation Conference, 459-468, 2009.

• U. Kuter and J. Hu. Computing and Using Lower and Upper Bounds for Action Elimi-
nation in MDP Planning, Proceedings of the 7th Symposium on Abstraction, Reformu-
lation and Approximation (SARA-07), Springer Lecture Notes in Computer Science
(4612), 243-257, 2007.

• A. Rawat, H. La, M. Shayman, and S.I. Marcus. Minimum Wavelength Assignment for
Multicast Traffic in All-Optical WDM Tree Networks, Proceedings of the 5th Interna-
tional Conference on Broadband Communications, Networks, and Systems (BROAD-
NETS 2008), London, UK, September 8-11, 2008.

• Y. Wang, M.C. Fu, and S.I. Marcus. A New Stochastic Gradient Estimator for Amer-
ican Option Pricing, Proceedings of the European Control Conference, Budapest, Hun-
gary, August 23-26, 2009.

• Y. Wang, M.C. Fu, and S.I. Marcus. Sensitivity Analysis for Barrier Options, Proceed-
ings of the 2009 Winter Simulation Conference, Austin, TX, Dec. 13-16, 2009.
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• Y. Wang, M.C. Fu, and S.I. Marcus. Dynamic Pricing with Continuous Stochastic
Demand, Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai,
China, Dec. 16-18, 2009.

• E. Zhou, M.C. Fu, and S.I. Marcus. Solving Continuous-State POMDPs via Projection
Particle Filtering, Proceedings of Eighth International Conference on Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, Montreal, Canada, July 6-11,
2008.

• E. Zhou, M.C. Fu, and S.I. Marcus. A Particle Filtering Framework for Random-
ized Optimization Algorithms, Proceedings of the 2008 Winter Simulation Conference,
Miami, FL, Dec. 7-10, 2008.

• E. Zhou, M.C. Fu, and S.I. Marcus. A Density Projection Approach to Dimension
Reduction for Continuous-State POMDPs, Proceedings of the 47th IEEE Conference
on Decision and Control, Cancun, Mexico, Dec. 9-11, 2008.

• E. Zhou, M.C. Fu, and S.I. Marcus. A Numerical Method for Financial Decision
Problems Under Stochastic Volatility, Proceedings of the 2009 Winter Simulation
Conference, Austin, TX, Dec. 13-16, 2009.

4.3 Authored Books or Monographs

• H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus. Simulation-based Algorithms for Markov
Decision Processes, Springer-Verlag, 2007 (research monograph).

4.4 Edited Volumes

• M.C. Fu, R.A. Jarrow, J.-Y. Yen, and R. J. Elliott, editors, Advances in Mathematical
Finance, Birkhauser, 2007.
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• Michael Fu: Elected Fellow of the Institute of Electrical and Electronics Engineers
(IEEE).

• Michael Fu: Elected Fellow of the Institute for Operations Research and the Manage-
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• Steve Marcus: Elected Fellow of the Society for Industrial and Applied Mathematics
(SIAM).

• The paper “A Numerical Method for Financial Decision Problems under Stochastic
Volatility,” by Enlu Zhou, Kun Lin, Michael Fu, and Steve Marcus, won the Best
Theoretical Paper Award at the 2009 Winter Simulation Conference (WSC), December
13-16, in Austin, Texas.
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• Huiju Zhang, Ph.D., 2007, Univ. of Maryland, supervised by M. Fu, “Three essays on
stochastic optimization applied in financial engineering and inventory management,”
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• Jeffrey Heath, Ph.D., 2007, Univ. of Maryland, supervised by M. Fu, “Global optimiza-
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• Andrew Hall, Ph.D., 2009, Univ. of Maryland, supervised by M. Fu, “Simulating and
Optimizing: Military Manpower Modeling and Mountain Range Options” (currently:
US Military Academy, West Point)

• Matthew Reindorp, Ph.D., 2009, Univ. of Maryland, supervised by M. Fu, “Industrial
Flexibility in Theory and Practice” (currently: Technical University of Eindhoven)

• Abraham Thomas, Ph.D., 2009, Univ. of Maryland, supervised by S. Marcus, “Learn-
ing Algorithms for Markov Decision Processes.”

• Enlu Zhou, Ph.D., 2009, Univ. of Maryland, supervised by S. Marcus and M. Fu,
“Particle Filtering for Stochastic Control and Global Optimization” (currently: Univ.
of Illinois Urbana-Champaign)

• Ping Hu, Ph.D expected 2011, Stony Brook, supervised by J. Hu

• Yongqiang Wang, Ph.D expected 2011, Univ. of Maryland, supervised by M. Fu and
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• Ranit Sengupta, Ph.D expected 2012, Univ. of Maryland, supervised by M. Fu and S.
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• Kun Lin, Ph.D expected 2012, Univ. of Maryland, supervised by M. Fu and S. Marcus
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